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ABSTRACT. This paper establishes nonparametric identification of individual treatment

effects in a nonseparable model with a binary endogenous regressor. The outcome

variable may be continuous, discrete or a mixture of both, and the instrumental variable

can take binary values. We distinguish the cases where the model includes or does not

include a selection equation for the binary endogenous regressor. First, we establish

point identification of the structural function when it is continuous and strictly monotone

in the latent variable. The key to our results is the identification of a so-called “counter-

factual mapping” that links each outcome with its counterfactual. This then identifies

every individual treatment effect. Second, we characterize all the testable restrictions

on observables imposed by the model with or without the selection equation. Lastly,

we generalize our identification results to the case where the outcome variable has a

probability mass in its distribution such as when the outcome variable is censored or

binary.
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1. INTRODUCTION AND RELATED LITERATURE

The primary aim of this paper is to establish nonparametric identification of individ-

ual treatment effects in a nonseparable model with a binary endogenous regressor. We

focus on the case where the instrumental variable has limited variations, in particular

when it takes only binary values. We introduce a counterfactual mapping, which links

each realized outcome with its counterfactual to identify individual treatment effects.

As a by–product, we also identify the structural function. The key idea is to exploit in-

formation from the “complier group” in the presence of endogeneity following Imbens

and Angrist (1994). Our matching approach generalizes Vytlacil and Yildiz (2007)’s

results to the fully nonseparable case.

The secondary objective of this paper is to investigate the identification power as

well as the restrictions on observations provided by the selection equation, such as its

weak monotonicity. In particular, we derive an easily verifiable high level condition

that is sufficient for identification of the structural function and show that the weak

monotonicity of the selection equation is sufficient for such a condition. Moreover, we

characterize all the testable restrictions on observables imposed by the model with or

without the selection equation.

Nonparametric identification of nonseparable models has become central for under-

standing the source of identification power in structural models, especially in models

with discrete endogenous variables, see, e.g., Chesher (2005), Heckman and Vytlacil

(2005) and the references therein. Theoretic models that admit structural relationships

usually just provide qualitative properties, e.g., monotonicity between economic vari-

ables of interest (see e.g. Milgrom and Shannon, 1994; Athey, 2001, 2002; Reny, 2011).

For the related empirical analysis, introducing additional parametric restrictions on the

functional form, especially on the form of heterogeneity, without careful justifications

may lead to spurious identification; see Heckman and Robb (1986) and Imbens and

Wooldridge (2009).
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The literature on nonseparable models and treatment effects is vast, see e.g. Imbens

(2007), Imbens and Wooldridge (2009) for surveys. Our paper also considers the identi-

fication of the structural functions in nonseparable models with discrete endogenous

regressors. Identification of such functions was studied in a setting with continuous

endogenous regressors; see Chesher (2003), Matzkin (2008), D’Haultfœuille and Février

(2011), Torgovitsky (2011), among others. For the binary endogenous variable case,

Chernozhukov and Hansen (2005), Chen, Chernozhukov, Lee, and Newey (2013) and

Chernozhukov and Hansen (2013) establish identification of the structural function

without requiring a selection equation. Further, Chesher (2005) establishes partial iden-

tification of the structural function at some conditional quantile of the error term under

local conditions on the instrumental variable. Subsequently, Jun, Pinkse, and Xu (2011)

tighten Chesher (2005)’s bounds by strengthening Chesher’s local conditions to the full

independence of the instrumental variable.

The idea behind our identification strategy differs from the above literature. It is

based on identifying the counterfactual mapping that relates each individual outcome to

its counterfactual under the monotonicity of the outcome equation. This then identifies

the structural function. Similar to Imbens and Angrist (1994), we consider an exogenous

change in the instrumental variable, which affects the distribution of outcomes through

a subpopulation called the “complier” group. We can then identify the conditional

probability distribution of the (potential) outcome for this subpopulation at each value

of the binary endogenous variable. From these two conditional distributions, we

can identify constructively the counterfactual mapping relating the quantiles of one

distribution to the other for the whole population.

Our counterfactual mapping generalizes Vytlacil and Yildiz (2007), who match condi-

tional expectations of two distributions — rather than quantiles of two distributions

— to identify the average treatment effects (ATE) in a weakly nonseparable triangular

model. The idea of matching several quantile functions to exploit limited variations of

instrumental variables was introduced by Athey and Imbens (2006) in the context of
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policy intervention analysis with repeated cross–sectional data in nonlinear difference–

in–difference models. It was also used by Guerre, Perrigne, and Vuong (2009) in the

empirical auction literature, and exploited by D’Haultfœuille and Février (2011) and

Torgovitsky (2011) in a triangular model with continuous endogenous regressors.

Key among our identifying conditions is the (strong or weak) monotonicity of the

structural function and the selection equation. Without any monotonicity restriction,

Manski (1990) derives sharp bounds for the average treatment effect (ATE) with and

without instrumental variables. Using an instrumental variable and the weak mono-

tonicity assumption on the selection equation, Imbens and Angrist (1994) establish point

identification of the local average treatment effect (LATE). Alternatively, in a similar

setting, Heckman and Vytlacil (1999, 2005) develop the marginal treatment effect (MTE)

and establish its identification by using local variations in instrumental variables. In this

paper, we impose a strong/weak monotonicity assumption on the outcome equation,

which allows us to constructively identify the counterfactual mapping, as well as the

individual treatment effects.

In our setting, we allow the instrumental variable to take only binary values, a case

where identification at infinity obviously fails; see, e.g., Heckman (1990). When the

outcome variable is continuously distributed, we assume that the outcome equation is

strictly monotone in the error term. Under this assumption, our identification strategy

only requires a binary–valued instrumental variable. On the other hand, when the

outcome variable has a mass probability, then the strict monotonicity condition is

no longer proper given that the error term is usually assumed to be continuously

distributed. We then replace the strong monotonicity by the weak monotonicity of the

outcome equation. As a consequence, our rank condition requires more variations in

the instrumental variable, though a finite support is still allowed.

Our method is related to the instrumental variable approach developed in Cher-

nozhukov and Hansen (2005) and generalized by Chen, Chernozhukov, Lee, and Newey

(2013) and Chernozhukov and Hansen (2013). The instrumental variable approach does
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not require a selection equation. Identification then relies on a full rank condition

of an equation system. In our setting, we exploit the identification power from the

monotonicity of some identified functions to deliver a weaker sufficient condition for

identification in a constructive way. Moreover, we characterize all the testable restric-

tions on observables imposed by the model with and without the selection equation,

thereby allowing researchers to assess the model from data.

The structure of the paper is organized as follows. We introduce our benchmark

model in Section 2 and its identification is established in Section 3. Section 4 extends

our identification mechanism to the case where there is no selection equation. Section 5

characterizes the restrictions imposed on data by the model with or without the selection

equation. Section 6 generalizes our method to the case where the distribution of the

outcome variable has some mass points. Section 7 concludes.

2. THE BENCHMARK MODEL

We consider the nonseparable triangular system with a binary endogenous variable:

Y = h(D, X, ε), (1)

D = 1[m(X, Z)− η ≥ 0], (2)

where Y is the outcome variable, D ∈ {0, 1} is a binary endogenous variable, X ∈ RdX

is a vector of observed exogenous covariates and Z ∈ RdZ are instrumental variables

for the binary endogenous variable D. The error terms ε and η are assumed to be scalar

valued disturbances.1 The functions h and m are unknown structural relationships,

where h is a function of interest.

1Note that η being scalar is not essential and can be relaxed by the monotonicity assumption in Imbens
and Angrist (1994). When ε ∈ Rk with k ≥ 2, there always exists a (known) bijection from Rk to R that
depends on neither d nor x. With more structure such as when (1) is Y = h(D, X, εD), we can extend our
results when {ε0, ε1} are identically distributed conditional on η as in Chernozhukov and Hansen (2005,
A4-(b)). Specifically, h(d, x, ·) is identified under our assumptions below.
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Following standard convention, we refer to (1) and (2) as the outcome equation and

the selection equation, respectively. Note that (2) covers the general setting where

D = g(X, Z, η) under additional standard assumptions. Specifically, suppose that

g is non–increasing and left–continuous in η. For each (x, z), let m(x, z) = inf{η ∈
R : g(x, z, η) = 0}. It follows that g(x, z, η) = 1 {m(x, z)− η ≥ 0} for all (x, z). For a

detailed discussion, see e.g. Vytlacil (2002, 2006).

A running example of this model is the return to education (see e.g. Chesher, 2005): let

Y, D and (X, Z) be ‘earnings’, ‘schooling’ and ‘demographics’, respectively. Moreover,

let ε be job related ability and η be education related talent. Intuitively, these two

latent variables should be correlated to each other, which accounts for the endogeneity

problem in the triangular system. The difference between demographics X and Z is that

Z affects the education level of an individual, but not the wage outcome. For instance,

Z could be some institutional features of the education system. Another example drawn

from the auction literature arises when h(D, X, ·) is the equilibrium bidding strategy

with risk averse bidders, D indicates the level of competition (the number of bidders),

X are characteristics of the auctioned object and ε is bidder’s private value, see e.g.

Guerre, Perrigne, and Vuong (2000, 2009). This example is especially relevant as strict

monotonicity and nonseparability in the private value ε arises from auction theory.

The key to our identification strategy is to match h(1, x, ·) with h(0, x, ·) under weak

conditions, i.e. h(1, x, ·) = φx(h(0, x, ·)), where the function φx can be identified in a

constructive manner. We call φx the counterfactual mapping because we can find the

counterfactual outcome h(1, x, e) from h(0, x, e) for any e ∈ Sh(0,x,ε). Then the individual

treatment effect can be defined by

h(1, X, ε)− h(0, X, ε) = D(Y− φ−1
X (Y)) + (1− D)(φX(Y)−Y), (3)

which is identified as soon as φx is identified for all x ∈ SX. Moreover, given φx and

any (d, x), we can also identify h(d, x, ·) as the quantile function of Fh(d,x,ε) following

Matzkin (2003).
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We make the following assumptions on the benchmark model.

Assumption A. Equation (1) holds where (i) h is continuous and strictly increasing in ε, with

ε distributed as U[0, 1], and (ii) (X, Z) is independent of ε.

Assumption B. Equation (2) holds where (i) (X, Z) is independent of (ε, η), and (ii) the

distribution of (ε, η) is absolutely continuous with respect to the Lebesgue measure with a

rectangular support.

In assumption A, the continuity and strict monotonicity of h follow e.g. Matzkin

(1999, 2003), Chesher (2003) and Chernozhukov and Hansen (2005). This assumption

rules out mass points in the distribution of Y. In Section 5, we generalize our results by

allowing h to be flat inside the support of ε. The uniform distribution of ε on [0, 1] is a

normalization which is standard in the literature (e.g., Chesher, 2003; Chernozhukov

and Hansen, 2005).

Assumption B specifies the selection equation. Condition (i) strengthens assump-

tion A–(ii) by including the disturbance term η in the independence condition. It is

worth emphasizing that we require the instrumental variable Z to be fully indepen-

dent of (ε, η), which is stronger than the local independence restriction imposed by

Chesher (2005). Condition (ii) on the joint distribution of (ε, η) is standard and weak.

It rules out the degenerate case.2 Moreover, if the objects of interest are the individual

treatment effects but not the structural function h, then the independence assumption

could be relaxed to Z⊥(ε, η)|X. Under such a weaker condition, we can still identify

the counterfactual mapping φx as our identification argument is conditional on X = x.

Under assumption B, the function m is identified up to the marginal distribution

function Fη(·), i.e., m(x, z) = F−1
η (E(D|X = x, Z = z)) for all (x, z) ∈ SXZ. Moreover,

2There are some overlaps in assumptions A and B. To simplify exposition, we keep them as is.
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for any x ∈ SX and t ∈ R, we have by assumptions A and B

P(h(1, x, ε) ≤ t; η ≤ m(x, z)) = P(Y ≤ t; D = 1|X = x, Z = z);

P(h(1, x, ε) ≤ t; η > m(x, z)) = P(Y ≤ t; D = 0|X = x, Z = z);

In contrast, neither P(h(1, x, ε) ≤ t; η > m(x, z)) nor P(h(0, x, ε) ≤ t; η ≤ m(x, z)) is

identified yet. Next, suppose there are z1, z2 ∈ SZ|X=x with p(x, z1) < p(x, z2), where

p(x, z) = E(D = 1|X = x, Z = z) is the propensity score. Then, the conditional

distribution Fh(d,x,ε)|m(x,z1)<η≤m(x,z2) can be identified as follows: For d = 0, 1,

P
(
h(d, x, ε) ≤ t|m(x, z1) < η ≤ m(x, z2)

)
=

P
[
h(d, x, ε) ≤ t; m(x, z1) < η ≤ m(x, z2)

]
P
[
m(x, z1) < η ≤ m(x, z2)

]
=

P(Y ≤ t; D = d|X = x, Z = z2)−P(Y ≤ t; D = d|X = x, Z = z1)

P(D = d|X = x, Z = z2)−P(D = d|X = x, Z = z1)
. (4)

As a matter of fact, the above calculation follows Imbens and Angrist (1994) and Vytlacil

and Yildiz (2007) who derive similar expressions for the expectations, while we consider

the full conditional distributions. Equation (4) is used in the next section.

3. IDENTIFICATION

In this section, we develop a simple and constructive approach for the identification

of φx and h under assumptions A and B. In particular, our method involves a weak rank

condition: the instrumental variable Z takes at least two values such that the propensity

score has a non–degenerate support, i.e., p(x, z1) 6= p(x, z2) for some z1, z2 ∈ SZ|X=x.

We first provide a lemma that shows that identification of φx(·) is sufficient for

identifying h(d, x, ·) under assumption A. Fix x ∈ SX. For each y ∈ Sh(0,x,ε), let

φx(y) ≡ h
(
1, x, h−1(0, x, y)

)
, where h−1(0, x, ·) is the inverse function of h(0, x, ·). Under

assumption A, the counterfactual mapping φx is well–defined, continuous and strictly

increasing from Sh(0,x,ε) onto Sh(1,x,ε). Clearly, h(1, x, ·) = φx(h(0, x, ·)) on [0, 1].

8



Lemma 1. Suppose assumption A holds. Then, for any x ∈ SX, h(0, x, ·) and h(1, x, ·) are

identified on [0, 1] if and only if φx(·) is identified on Sh(0,x,ε).

Proof. See Appendix A.1 �

Lemma 1 reduces the identification of h(1, x, ·) and h(0, x, ·) into the identification of

one function, namely, the counterfactual mapping φx(·). To see the if part, note that

conditional on X = x,

h(1, x, ε) = YD + φx(Y)(1− D), h(0, x, ε) = φ−1
x (Y)D + Y(1− D). (5)

Then, the identification of φx provides the distributions of h(0, x, ε) and h(1, x, ε), which

further identify h(0, x, ·) and h(1, x, ·) under assumption A, respectively.

To identify the counterfactual mapping φx(·), we now introduce a rank condition.

Assumption C (Rank Condition). For any x ∈ SX, Sp(X,Z)|X=x is not a singleton.

When SZ|X = {z1, z2}, the Rank Condition is satisfied if p(x, z1) 6= p(x, z2) for any

x ∈ SX. Though weak, this rank condition can be relaxed further as is discussed at the

end of this section.

For a generic random variable W, let QW be the quantile function of its distribution,

i.e. QW(τ) = inf {q ∈ R : P(W ≤ q) ≥ τ} for any τ ∈ [0, 1]. Further, for any x, d and a

generic subset A ⊆ Sη, let Qh(d,x,ε)|η∈A be the conditional quantile function of h(d, x, ε)

given η ∈ A, i.e. Qh(d,x,ε)|η∈A(τ) = inf {q : P [h(d, x, ε) ≤ q|η ∈ A] ≥ τ}.

Theorem 1. Suppose assumptions A to C hold. For every x ∈ SX, let z1, z2 ∈ SZ|X=x

such that p(x, z1) < p(x, z2). Then the support of h(d, x, ε) for d = 0, 1 is identified by

Sh(d,x,ε) = SY|D=d,X=x. Moreover, the counterfactual mapping φx(·) is identified on Sh(0,x,ε)

by

φx(·) = Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)

(
Fh(0,x,ε)|m(x,z1)<η≤m(x,z2)(·)

)
, (6)

where Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)(·) and Fh(0,x,ε)|m(x,z1)<η≤m(x,z2)(·) are identified by (4).

Proof. See Appendix A.2 �
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It should be noted that Theorem 1 actually holds pointwise in x. On the other hand,

the requirement that the rank condition holds for any x ∈ SX in assumption C is useful

to identify every individual treatment effect in the whole population by (3). Moreover,

using the counterfactual mapping φx(·) and (5), we can identify other policy effects of

interest, e.g.,

ATE ≡ E
[
h(1, X, ε)− h(0, X, ε)

]
= E

{
D
[
Y− φ−1

X (Y)
]
+ (1− D)

[
φX(Y)−Y

]}
;

ATT ≡ E
[
h(1, X, ε)− h(0, X, ε)

∣∣D = 1
]
= E

[
Y− φ−1

X (Y)
∣∣D = 1

]
;

QTE ≡ Qh(1,X,ε)(·)−Qh(0,X,ε)(·) = QD·Y+(1−D)·φX(Y)(·)−Q(1−D)·Y+D·φ−1
X (Y)(·).

where ATT and QTE respectively refer to the average treatment effect on the treated

and the quantile treatment effect, see, e.g., Heckman and Robb (1986). It is worth

emphasizing that Theorem 1 still holds under the weaker conditional independence

assumption Z⊥(ε, η)|X, used in the literature to identify the preceding policy effects.

In particular, if one imposes additivity on h, i.e. h(D, X, ε) = h∗(D, X) + ε, then

φx(y) = h∗(1, x)− h∗(0, x) + y. By Theorem 1, we can show that for any τ ∈ [0, 1],

h∗(1, x)− h∗(0, x) = Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)(τ)−Qh(0,x,ε)|m(x,z1)<η≤m(x,z2)(τ).

Thus, by integrating out τ, we obtain

h∗(1, x)− h∗(0, x) = E[h(1, x, ε)− h(0, x, ε)|m(x, z1) < η ≤ m(x, z2)]

=
E(Y|X = x, Z = z2)−E(Y|X = x, Z = z1)

p(x, z2)− p(x, z1)
.

Note that the RHS has the same expression as the (conditional) LATE in Imbens and

Angrist (1994). This is not surprising, since there is no unobserved heterogeneity

in individual treatment effects as h(1, x, ε) − h(0, x, ε) = h∗(1, x) − h∗(0, x). Thus,

individual treatment effects are the same as (conditional) LATE or conditional ATE,
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which is defined as E[h(1, X, ε)− h(0, X, ε)|X = x].3 Further, additive separability of

the structural function h in ε can be tested by testing the slope of φx(·) equals 1.

By Lemma 1 and Theorem 1, the identification of h follows.

Corollary 1. Suppose that assumptions A to C hold. For every x ∈ SX, d = 0, 1 and τ ∈ [0, 1],

h(d, x, τ) is identified as the τ–th quantile of the distribution of Fh(d,x,ε), where

Fh(1,x,ε)(t) = P
[
YD + φx(Y)(1− D) ≤ t|X = x

]
;

Fh(0,x,ε)(t) = P
[
Y(1− D) + φ−1

x (Y)D ≤ t|X = x
]
.

It is worthnoting that the copula of (ε, η) is also identified on [0, 1]×Sp(X,Z) by

C(τ, p) = P(Y ≤ h(1, x, τ); D = 1|X = x, p(X, Z) = p).

This is because, conditional on X = x and p(X, Z) = p, the event {Y ≤ h(1, x, τ); D = 1}
is equivalent to

{
ε ≤ τ; η ≤ Qη(p)

}
. In particular, the copula is identified for all

τ ∈ [0, 1] but only for p ∈ Sp(X,Z) which is in general a subset of [0, 1] when the

propensity score has limited variations.

As mentioned above, we can further relax the rank condition in Corollary 1 by

allowing some x with a singleton support Sp(X,Z)|X=x. To see this, let (x, z) ∈ SXZ and

Sp(X,Z)|X=x = {p(x, z)}. Suppose that there exists (x̃, z̃) ∈ SXZ such that assumption C

is satisfied for x̃ with p(x̃, z̃) = p(x, z). By Corollary 1, h(d, x̃, ·) is identified for d = 0, 1.

Moreover, for any τ ∈ [0, 1],

P(Y ≤ h(1, x, τ)|D = 1, X = x, Z = z) = P(ε ≤ τ|η ≤ m(x, z))

= P(ε ≤ τ|η ≤ m(x̃, z̃)) = P
[
Y ≤ h(1, x̃, τ)|D = 1, X = x̃, Z = z̃

]
,

where the second step comes from 1(η ≤ m(x̃, z̃)) a.s.
= 1(η ≤ m(x, z)) since p(x̃, z̃) =

p(x, z). Thus h(1, x, τ) = QY|D=1,X=x,Z=z
{

FY|D=1,X=x̃,Z=z̃ (h(1, x̃, τ))
}

. A similar result

holds for h(0, x, τ).

3From such an intuition, (2) is not even needed for this simple expression of h∗(1, x)− h∗(0, x).

11



4. EXTENDING THE IDENTIFICATION ARGUMENT

In this section, we investigate the identification power arising from the selection

equation, as well as from variations in the instrumental variable Z. In particular, we

drop assumption B and provide a general sufficient condition for the identification of

the counterfactual mapping φx as well as the structural function h. Such a condition is

related to, but weaker than, the rank condition for global identification developed in

Chernozhukov and Hansen (2005, Theorem 2). Throughout, we maintain assumption A

and for simplicity, we let Z be a binary variable.

Under assumption A, we have P
[
Y ≤ h(D, X, τ)|X = x, Z = z

]
= τ for all z ∈

SZ|X=x and τ ∈ (0, 1), which is called the main testable implication by Chernozhukov

and Hansen (2005, Theorem 1). Because D is binary, we have for all z ∈ SZ|X=x,

P
[
Y ≤ h(1, x, τ); D = 1|X = x, Z = z

]
+ P

[
Y ≤ h(0, x, τ); D = 0|X = x, Z = z

]
= τ.

Suppose z1, z2 ∈ SZ|X=x with p(x, z1) < p(x, z2). Thus, we obtain

P
[
Y ≤ h(1, x, τ); D = 1|X = x, Z = z1

]
+ P

[
Y ≤ h(0, x, τ); D = 0|X = x, Z = z1

]
= P

[
Y ≤ h(1, x, τ); D = 1|X = x, Z = z2

]
+P

[
Y ≤ h(0, x, τ); D = 0|X = x, Z = z2

]
,

i.e.,

∆0(h(0, x, τ), x, z1, z2) = ∆1(h(1, x, τ), x, z1, z2), (7)

where ∆d(·, x, z1, z2) is defined for y ∈ R as

∆0(y, x, z1, z2) ≡ P [Y ≤ y; D = 0|X = x, Z = z1]−P [Y ≤ y; D = 0|X = x, Z = z2] ,

∆1(y, x, z1, z2) ≡ P [Y ≤ y; D = 1|X = x, Z = z2]−P [Y ≤ y; D = 1|X = x, Z = z1] .

By definition, ∆d(·, x, z1, z2) is identified for d = 0, 1. Let y = h(0, x, τ) in (7) so that

h(1, x, τ) = φx(y). Since τ is arbitrary, then

∆0(y, x, z1, z2) = ∆1(φx(y), x, z1, z2), ∀y ∈ Sh(0,x,ε). (8)
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Our general identification result is based on (8) and exploits the strict monotonicity of

φx(·). Recall that under assumption B, ∆d(y, x, z1, z2) = P[h(d, x, ε) ≤ y; m(x, z1) < η ≤
m(x, z2)], which is continuous and strictly increasing in y ∈ Sh(d,x,ε), thereby identifying

φx(·) = ∆−1
1 (∆0(·, x, z1, z2), x, z1, z2) on Sh(0,x,ε). This suggests that identification of the

counterfactual mapping φx can be achieved under weaker conditions than assumption B.

Definition 1 (Piecewise Monotone). Let g : R→ R and S ⊆ R. We say that g is piecewise

weakly (strictly) monotone on the support S if S can be partitioned into a countable number of

non–overlapping intervals such that g is weakly (strictly) monotone in every interval.

Lemma 2. Suppose assumption A holds. Given x ∈ SX, suppose z1, z2 ∈ SZ|X=x with

p(x, z1) < p(x, z2). Then, ∆1(·, x, z1, z2) is piecewise weakly (strictly) monotone on Sh(1,x,ε)

if and only if ∆0(·, x, z1, z2) is piecewise weakly (strictly) monotone on Sh(0,x,ε).

Proof. See Appendix A.3 �

Assumption D. Suppose ∆d(·, x, z1, z2) is piecewise weakly monotone on Sh(d,x,ε), d = 0, 1.

Assumption D is weak. In particular, ∆d(·, x, z1, z2) may be discontinuous. On the other

hand, if ∆d(·, x, z1, z2) is continuously differentiable as in Chernozhukov and Hansen

(2005, Theorem 2-i), then assumption D holds.

Lemma 3. Let x ∈ SX such that z1, z2 ∈ SZ|X=x with p(x, z1) < p(x, z2). Suppose (i)

φx(·) : Sh(0,x,ε) → Sh(1,x,ε) is continuous and strictly increasing, and (ii) equation (8) and

assumption D hold where ∆d(·, x, z1, z2) and Sh(d,x,ε) are known for d = 0, 1. Then, φx(·) is

identified if and only if ∆d(·, x, z1, z2) is piecewise strictly monotone on Sh(d,x,ε) for some d.

Proof. See Appendix A.4 �

Lemma 3 is useful when identification is based on (8) only. In this case, under the

maintained assumption D, Lemma 3 provides a necessary and sufficient condition for

the identification of φx(·).
We now extend Theorem 1 and Corollary 1.

13



Theorem 2. Suppose that assumptions A and C hold. Let x ∈ SX such that z1, z2 ∈
SZ|X=x with p(x, z1) < p(x, z2). Suppose ∆d(·, x, z1, z2) is piecewise strictly monotone

on SY|X=x,D=d for d = 0, 1. Then the support of h(d, x, ε) is identified by Sh(d,x,ε) =

SY|D=d,X=x. Moreover, φx(·) and h(d, x, ·) are identified on the supports Sh(0,x,ε) and [0, 1],

respectively.

Proof. See Appendix A.5. �

5. CHARACTERIZATION OF MODEL RESTRICTIONS

In empirical applications, an important question is whether to adopt the nonseparable

model (1) with or without the selection equation (2). As shown in Section 3, the selection

equation provides a simple and constructive identification result, but can introduce

additional restrictions on the data. In this section, we characterize all the restrictions

on observables imposed by the model with or without the selection equation. These

restrictions are useful for developing model selection and model specification tests.

Formally, we denote these two models by

M0 ≡
{
[h, FεD|XZ] : assumption A holds

}
;

M1 ≡
{
[h, m, Fεη|XZ] : assumptions A and B hold

}
.

To simplify, hereafter we assume SXZ = SX × {z1, z2}. Moreover, p(x, z1) < p(x, z2)

for all x ∈ SX. We say that a conditional distribution FYD|XZ of observables is rational-

ized by modelM if and only if there exists a structure inM that generates FYD|XZ.

Theorem 3. A conditional distribution FYD|XZ can be rationalized byM0 if and only if

(i) FY|DXZ is a continuous conditional CDF;

(ii) for each x ∈ SX, there exists a continuous and strictly increasing mapping gx : R→ R

such that gx maps S(1−D)Y+Dg−1
x (Y)|X=x onto SDY+(1−D)gx(Y)|X=x and

∆0(·, x, z1, z2) = ∆1(gx(·), x, z1, z2). (9)
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Proof. See Appendix A.6 �

In Theorem 3, the key restriction is the existence of a solution to (9), which may not be

unique.

We now turn toM1. Let C be a collection of differentiable and strictly increasing

copula functions with support (0, 1]2.

Theorem 4. A conditional distribution FYD|XZ rationalized byM0 can also be rationalized by

M1 if and only if

(i) for any x ∈ SX and d ∈ {0, 1}, SY|D=d,X=x is an interval of R, and ∆d(·, x, z1, z2)

is continuous strictly increasing on SY|D=d,X=x and flat elsewhere;

(ii) there exists a copula function C ∈ C such that for any (x, z) ∈ SXZ and y ∈ R,

P
[
Y ≤ y; D = 1|X = x, Z = z

]
= C(τx(y), p(x, z)),

where τx(·) = P(DY + (1− D)∆−1
1 (∆0(Y, x, z1, z2), x, z1, z2) ≤ ·|X = x).

Proof. See Appendix A.7 �

Condition (i) strengthens Theorem 3–(ii): By Lemma 3, the fact that ∆d(·, x, z1, z2) is

continuous, strictly increasing on SY|D=d,X=x and flat elsewhere implies that (9) has a

unique solution gx(·) = φx(·). Because (ε, η) is continuously distributed with a rect-

angular support, SY|D=d,X=x is an interval under assumption A. Condition (ii) comes

from the identification of the copula of (ε, η) on [0, 1]×Sp(X,Z) under the additional

assumption B. Moreover, condition (ii) implies that P
[
Y ≤ y; D = 1|X = x, Z = z

]
=

P
[
Y ≤ y; D = 1|p(X, Z) = p(x, z)

]
and the latter is strictly increasing in p(x, z). Further,

P
[
Y ≤ y; D = 1|X = x, Z = z2

]
−P

[
Y ≤ y; D = 1|X = x, Z = z1

]
is strictly increasing

in y, see also Mourifie and Wan (2014).4

4See also Vuong and Xu (2014) for a characterization of all the restrictions associated with two other
models: {[h, FεD|XZ]: ε is continuously distributed on an interval and assumption A–(ii) holds} and
{[h, m, Fεη|XZ]: assumption B holds}.
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6. GENERALIZATION

This section provides another extension of Theorem 1. Specifically, we maintain

assumption B but relax the continuity and strict monotonicity assumption of h so that

our method applies to the case where the outcome variable has a probability mass

in its distribution such as when the outcome variable is censored or binary (see e.g.

Wooldridge, 2013).

Assumption E. Equation (1) holds where (i) h is left–continuous and weakly increasing in ε,

with ε distributed as U[0, 1], and (ii) (X, Z) is independent of ε.

The left–continuity of h is a normalization for the identification of the structural function

at its discontinuous points. For simplicity, the following rank condition is introduced

for the identification of h(1, x, ·). The identification of h(0, x, ·) can be obtained similarly.

Assumption F (Generalized Rank Condition). For any x ∈ SX, there exists x̃ ∈ SX such

that (i) the set Sp(X,Z)|X=x
⋂

Sp(X,Z)|X=x̃ contains at least two different values, and (ii) for

any pair τ1, τ2 ∈ (0, 1),

h(0, x̃, τ1) = h(0, x̃, τ2) =⇒ h(1, x, τ1) = h(1, x, τ2).

Condition (i) of assumption F requires that there exist z1, z2 ∈ SZ|X=x and z̃1, z̃2 ∈
SZ|X=x̃ such that p(x, z1) = p(x̃, z̃1) < p(x, z2) = p(x̃, z̃2). Condition (ii) is testable

since it is equivalent to the following condition: For any τ1, τ2 ∈ (0, 1),

Fh(0,x̃,ε)|m(x̃,z̃1)<η≤m(x̃,z̃2)(τ1) = Fh(0,x̃,ε)|m(x̃,z̃1)<η≤m(x̃,z̃2)(τ2)

=⇒ Fh(1,x,ε)|m(x,z1)<η≤m(x,z2)(τ1) = Fh(1,x,ε)|m(x,z1)<η≤m(x,z2)(τ2).

Thus, we can verify whether any given x̃ ∈ SX satisfies assumption F. When h(d, x, ·)
is strictly monotone in ε, by setting x̃ = x, assumption F reduces to assumption C.
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Fix x and let x̃ satisfy assumption F. We define a generalized counterfactual map-

ping φx,x̃(·) as φx,x̃
(
y
)
= h(1, x, h−1(0, x̃, y)) for all y ∈ Sh(0,x̃,ε).

5 If x̃ = x, then φx,x̃(·)
reduces to the counterfactual mapping φx(·) in Section 3. Let (z1, z2) ∈ SZ|X=x and

(z̃1, z̃2)SZ|X=x̃ with p(x, z1) = p(x̃, z̃1) < p(x, z2) = p(x̃, z̃2). The next theorem general-

izes Theorem 1 and Corollary 1.

Theorem 5. Suppose assumptions B and E hold. Given x and x̃ satisfying assumption F, then

φx,x̃(·) is identified by

φx,x̃(·) = Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)

(
Fh(0,x̃,ε)|m(x̃,z̃1)<η≤m(x̃,z̃2)(·)

)
. (10)

and for any τ ∈ [0, 1], h(1, x, τ) is identified as the τ–th quantile of the distribution

Fh(1,x,ε)(·) = P(Y ≤ ·; D = 1|X = x) + P
[
φx,x̃(Y) ≤ ·; D = 0|X = x̃

]
.

Proof. See Appendix A.8 �

Similarly to assumption C, assumption F can be weaken. To illustrate Theorem 5,

we discuss the generalized rank condition (assumption F) with two examples: the first

example is a fully nonseparable censored regression model while the second example is

a weakly separable binary response model. The first example seems to be new, though

special cases have been studied previously under some parametric and/or separability

assumptions. The second example was studied by Vytlacil and Yildiz (2007).

Example 1. Suppose (X, Z) is independent of (ε, η) and the distribution of (ε, η) has a non–

degenerate rectangular support with ε ∼ U(0, 1). Moreover, let

Y = h∗(D, X, ε)1
(
h∗(D, X, ε) ≥ 0

)
,

D = 1
(
m(X, Z) ≥ η

)
,

where h∗ is strictly increasing in ε. The structural unknowns are (h∗, m, Fεη).

5Due to the weak monotonicity of h in ε, we define h−1(0, x̃, y) = infτ{τ : h(0, x̃, τ) ≥ y}.
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Fix x ∈ SX. For d = 0, 1, let τdx solve h∗(d, x, τdx) = 0. W.l.o.g., let τdx ∈ (0, 1).

Thus, assumption F is satisfied if there exists an x̃ ∈ SX such that τ0x̃ ≤ τ1x and p(x, z1) =

p(x̃, z̃1) < p(x, z2) = p(x̃, z̃2) for some z1, z2 ∈ SZ|X=x, z̃1, z̃2 ∈ SZ|X=x̃.

Example 2. Let Y and D denote a binary outcome variable and a binary endogenous regressor,

respectively. Consider

Y = 1
(
h∗(D, X) ≥ ε

)
,

D = 1
(
m(X, Z) ≥ η

)
.

To identify h∗(1, x) for some x, assumption F requires that there exists x̃ ∈ SX such that

h∗(1, x) = h∗(0, x̃) and p(x, z1) = p(x̃, z̃1) < p(x, z2) = p(x̃, z̃2) for some z1, z2 ∈ SZ|X=x,

z̃1, z̃2 ∈ SZ|X=x̃. Thus, assumption F reduces exactly to the support condition in Vytlacil and

Yildiz (2007).

7. CONCLUSION

This paper establishes nonparametric identification of the counterfactual mapping

and individual treatment effects in a nonseparable model with a binary endogenous

regressor. Our benchmark model assumes strict monotonicity in the outcome equation

and weak monotonicity in the selection equation. Our counterfactual mapping then

links each outcome with its counterfactual. Moreover, we consider two extensions: One

without a selection equation and the other with weak monotonicity in the outcome

equation.

As indicated in Section 3, the counterfactual mapping and individual treatment effects

can be identified under the weaker independence assumption Z⊥(ε, η)|X and the rank

condition (assumption C). Some policy effects such as ATE can also be identified. It is

important to note that such results do not require exogeneity of X. On the other hand,

identification of the structural function h, which is necessary for some counterfactuals

in empirical IO, requires the full independence (X, Z)⊥(ε, η) in assumption B.
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To conclude, one needs to develop a nonparametric estimation method for the struc-

tural function h. To simplify ideas, we consider the benchmark model in Section 3

where X is discrete and Z is binary. We further assume p(x, z1) 6= p(x, z2) for all

(x, z1), (x, z2) ∈ SXZ. A method will be first to estimate the counterfactual mapping

φx(·) and its inverse by

φ̂x(·) = Q̂h(1,x,ε)|m(x,z1)<η≤m(x,z2)(F̂h(0,x,ε)|m(x,z1)<η≤m(x,z2)(·)),

φ̂−1
x (·) = Q̂h(0,x,ε)|m(x,z1)<η≤m(x,z2)(F̂h(1,x,ε)|m(x,z1)<η≤m(x,z2)(·)),

where Q̂h(d,x,ε)|m(x,z1)<η≤m(x,z2)(·) is the quantile function of

F̂h(d,x,ε)|m(x,z1)<η≤m(x,z2)(·) =
∑n

i=1 1(Yi ≤ ·; Di = d; Xi = x)[1(Zi = z2)− 1(Zi = z1)]

∑n
i=1 1(Di = d; Xi = x)[1(Zi = z2)− 1(Zi = z1)]

.

In the second step, one estimates the structural function for any τ ∈ (0, 1) by

ĥ(1, x, τ) = Q̂YD+φx(Y)(1−D)|X=x(τ), ĥ(0, x, τ) = Q̂Y(1−D)+φ−1
x (Y)D|X=x(τ),

which are respectively the τ–th quantiles of

F̂YD+φx(Y)(1−D)|X=x(·) =
∑n

i=1 1(YD + φ̂x(Y)(1− D) ≤ ·; Xi = x)
∑n

i=1 1(Xi = x)
,

F̂Y(1−D)+φ−1
x (Y)D|X=x(·) =

∑n
i=1 1(Y(1− D) + φ̂−1

x (Y)D ≤ ·; Xi = x)
∑n

i=1 1(Xi = x)
.

The above estimation procedure can be easily implemented.

Excluding possibly boundaries, the above suggests that the estimators of the counter-

factual mapping φx(·) and the structural function h are
√

n–consistent. Their precise

asymptotic distributions can be derived using the functional delta method and the com-

position lemma in Van Der Vaart and Wellner (1996, Lemma 3.9.27). If Z is continuous,

we conjecture that φx(·) and h are still estimated at
√

n–rate. This is because we can av-

erage out Z and obtain EFh(0,x,ε)|m(x,Z1)<η≤m(x,Z2)(·) = EFh(1,x,ε)|m(x,Z1)<η≤m(x,Z2)(φx(·))
where Z1 and Z2 are two different observations. On the other hand, if X is continuous,
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the estimation of φx and h will no longer be
√

n–consistent. An important question is

then the optimal rate for estimating these functions. Moreover, we should note that

even in the benchmark model, there might exist some values x̃ 6= x satisfying assump-

tion F–(i). In this case, one has other counterfactual mapping φx,x̃ that can be used to

identify h. A second question is to use this property to improve efficiency.
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APPENDIX A. PROOFS

A.1. Proof of Lemma 1.

Proof. The only if part is straightforward by the definition of φx(·) and it suffices to show

the if part. Suppose φx(·) is identified. Fix x. By definition, h(1, x, ·) = φx(h(0, x, ·)) on

[0, 1]. Then, conditional on X = x, we have h(1, x, ε) = YD + φx(Y)(1− D) and h(0, x, ε) =

Y(1− D) + φ−1
x (Y)D. Therefore we can identify Fh(d,x,ε) as follows: for all t ∈ R,

Fh(1,x,ε)(t) = P(YD + φx(Y)(1− D) ≤ t|X = x),

Fh(0,x,ε)(t) = P(Y(1− D) + φ−1
x (Y)D ≤ t|X = x).

Further, by assumption A, we have h(d, x, τ) = Qh(d,x,ε)(τ) for all τ ∈ [0, 1]. �

A.2. Proof of Theorem 1.

Proof. Fix x ∈ SX and z1, z2 ∈ SZ|X=x with p(x, z1) < p(x, z2). To show the first part, w.l.o.g. let

d = 1. By assumption B, Sh(1,x,ε)|m(x,z1)<η≤m(x,z2) = Sh(1,x,ε). Moreover, Sh(1,x,ε)|m(x,z1)<η≤m(x,z2) ⊆

Sh(1,x,ε)|η≤m(x,z2) = SY|D=1,X=x,Z=z2
⊆ SY|D=1,X=x ⊆ Sh(1,x,ε). Hence, all these supports are

equal.

For the second part, because h is strictly monotone in ε, we have for any τ ∈ (0, 1)

Fh(0,x,ε)|m(x,z1)<η≤m(x,z2)(h(0, x, τ)) = Fε|m(x,z1)<η≤m(x,z2)(τ) = Fh(1,x,ε)|m(x,z1)<η≤m(x,z2)(h(1, x, τ)).

Because Fh(1,x,ε)|m(x,z1)<η≤m(x,z2) is continuous and strictly increasing at h(1, x, τ), we have

h(1, x, τ) = Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)

(
Fh(0,x,ε)|m(x,z1)<η≤m(x,z2)(h(0, x, τ))

)
.

Let y = h(0, x, τ). Then, τ = h−1(0, x, y) and the above equation becomes

φx(y) = Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)

(
Fh(0,x,ε)|m(x,z1)<η≤m(x,z2)(y)

)
. �

A.3. Proof of Lemma 2.

Proof. For the if part, suppose ∆0(·, x, z1, z2) is piecewise weakly monotone on Sh(0,x,ε). Then,

by definition, Sh(0,x,ε) can be partitioned into a sequence of non–overlapping intervals {Ij : j =

1, · · · , J}, where J ∈N∪ {+∞}, such that ∆0(·, x, z1, z2) is weakly monotone on every interval.
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By assumption A, φx(·) is continuous and strictly increasing. Then, Sh(1,x,ε) can be partitioned

into a sequence of non–overlapped intervals {φx(Ij) : j = 1, · · · , J}. Moreover, by (8), we have

∆1(y, x, z1, z2) = ∆0
(
φ−1

x (y), x, z1, z2
)
, ∀y ∈ Sh(1,x,ε).

Clearly, ∆1(·, x, z1, z2) is weakly monotone in every interval φx(Ij). The only if part can be shown

similarly. �

A.4. Proof of Lemma 3.

Proof. We first show the if part. W.l.o.g., let ∆0(·, x, z1, z2) be piecewise strictly monotone on

Sh(0,x,ε), which can be partitioned into a sequence of non–overlapping intervals {Ij : j =

1, · · · , J}. On each interval Ij, due to the monotonicity, ∆0(·, x, z1, z2) has at most a countable

number of discontinuity points. Hence, Sh(0,x,ε) can be further partitioned into a countable

number of non–overlapped intervals such that ∆0(·, x, z1, z2) is continuous and strictly monotone

on every interval. For such a sequence of intervals, we further merge adjacent intervals if

∆0(·, x, z1, z2) is continuous and strictly monotone on the union of them.

Thus, we partition Sh(0,x,ε) into a countable number of non–overlapped intervals {I′j : j =

1, · · · , J′}, where J′ ∈ N ∪ {+∞}, such that ∆0(·, x, z1, z2) is continuous, strictly monotone

on every interval, and discontinuous or achieve a local extreme value at each endpoints of

these intervals. By the proof of Lemma 2, (8) and the fact that φx(·) : Sh(0,x,ε) → Sh(1,x,ε) is

continuous and strictly increasing implies that Sh(1,x,ε) can be partitioned into the same number

of non–overlapped intervals {φx(I′j) : j = 1, · · · , J′}, such that ∆1(·, x, z1, z2) is continuous,

strictly monotone on every interval, and discontinuous or achieve a local extreme value at each

endpoints of these intervals.

Moreover, for each y ∈ I′j , we solve φx(y) by (8) as

φx(y) = ∆−1
1,j (∆0,j(y, x, z1, z2), x, z1, z2),

where ∆0,j(·, x, z1, z2) and ∆1,j(·, x, z1, z2) are the projections of ∆0(·, x, z1, z2) and ∆1(·, x, z1, z2)

on the support I′j and φx(Ij), respectively.

For the only if part, w.l.o.g., suppose ∆0(·, x, z1, z2) is constant on a non–degenerate interval

I ⊆ Sh(0,x,ε). By the proof of Lemma 2, ∆1(·, x, z1, z2) is also constant on φx(I). It suffices
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to construct a continuous and strictly increasing function φ̃x 6= φx such that (8) holds for φ̃x.

Let φ̃x(y) = φx(y) for all y 6∈ I and φ̃x(y) = φx(g(y)) for all y ∈ I, where g is an arbitrary

continuous, strictly increasing mapping from I onto I. Clearly, there are plenty of choices

for the function g. Moreover, φ̃x 6= φx if g(t) is not an identity mapping. By construction,

∆1(φ̃x(y), x, z1, z2) = ∆1(φx(y), x, z1, z2) holds for all y ∈ I because ∆1(·, x, z1, z2) is constant on

φx(I). This equation also holds for all y 6∈ I by the definition of φ̃x. Then (8) holds for φ̃x. �

A.5. Proof of Theorem 2.

Proof. We first show the identification of Sh(d,x,ε). Clearly, SY|X=x,D=d ⊆ Sh(d,x,ε). Suppose

w.l.o.g. SY|X=x,D=0 ( Sh(0,x,ε). Therefore, there exists an interval Iε in Sε such that P(ε ∈

Iε; D = 0|X = x, Z = z) = 0 and P(ε ∈ Iε; D = 1|X = x, Z = z) = P(Iε) for all z ∈ SZ|X=x. In

other words, conditional on X = x and Z = z for any z ∈ SZ|X=x, all individual with ε ∈ Iε

choose D = 1 almost surely. Thus, Sh(1,x,ε)|ε∈Iε
⊆ SY|X=x,D=1 and the latter support is identified.

For e1 < e2 ∈ Iε, note that

P(Y ≤ h(1, x, e2); D = 1|X = x, Z = z)−P(Y ≤ h(1, x, e1); D = 1|X = x, Z = z)

= P(ε ∈ (e1, e2]), ∀z ∈ SZ|X=x.

Hence, for z1, z2 ∈ SZ|X=x with p(x, z1) < p(x, z2), we have

∆1(h(1, x, e2), x, z1, z2)− ∆1(h(1, x, e1), x, z1, z2)

= P(Y ≤ h(1, x, e2); D = 1|X = x, Z = z2)−P(Y ≤ h(1, x, e1); D = 1|X = x, Z = z2)

−P(Y ≤ h(1, x, e2); D = 1|X = x, Z = z1) + P(Y ≤ h(1, x, e1); D = 1|X = x, Z = z1) = 0.

which contradicts with the piecewise strict monotonicity of ∆1(·, x, z1, z2) on SY|X=x,D=1. There-

fore, we have SY|X=x,D=d = Sh(d,x,ε).

Thus, the identification of φx(·) and h(d, x, ·) follows directly from Lemmas 1 and 3. �

A.6. Proof of Theorem 3.

Proof. For the only if part, let gx(·) = φx(·) on the support Sh(0,x,ε). The result is straightforward

by Section 4,
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For the if part, we prove by constructing a structure S = [h, FεD|XZ] to rationalize the given

distribution FYD|XZ. Fix an arbitrary x. Let Hx(y) ≡ P
(
Y · (1− D) + g−1

x (Y) · D ≤ y|X = x
)

and h(0, x, τ) be its τ–th quantile. Moreover, let h(1, x, τ) = gx(h(0, x, τ)). Clearly, condition

(i) and the fact that gx is continuous and strictly increasing on the support ensure h(d, x, ·) are

continuous and strictly increasing on [0, 1]. Further let PS(ε ≤ τ; D = d|X = x, Z = z) = P(Y ≤

h(d, x, τ); D = d|X = x, Z = z) for all z ∈ SZ|X=x and (τ, d) ∈ [0, 1]× {0, 1}, where PS denote

the probability measure under the constructed structure S. We now show that (X, Z)⊥ε and

ε ∼ U[0, 1].

By (9), we have

P
[
Y ≤ gx(y); D = 1|X = x, Z = z1

]
+ P

[
Y ≤ y; D = 0|X = x, Z = z1

]
= P

[
Y ≤ gx(y); D = 1|X = x, Z = z2

]
+ P

[
Y ≤ y; D = 0|X = x, Z = z2

]
= P

[
Y ≤ gx(y); D = 1|X = x

]
+ P

[
Y ≤ y; D = 0|X = x

]
= Hx(y).

where the second equality is because SZ|X=x = {z1, z2}.

Hence, for any τ ∈ [0, 1] and i = 1, 2,

PS(ε ≤ τ|X = x, Z = zi) = P
(
Y ≤ h(0, x, τ); D = 0|X = x, Z = zi

)
+ P

(
Y ≤ h(1, x, τ); D = 1|X = x, Z = zi

)
= Hx(h(0, x, τ)) = τ,

where the last step is by the construction of h(0, x, ·) and the strict monotonicity of Hx(·) on the

support S(1−D)Y+Dg−1
x (Y)|X=x. Therefore, (X, Z)⊥ε and ε ∼ U[0, 1].

Now it suffices to show that the constructed structure S = [h, FεD|XZ] generates the given

distribution FYD|XZ. This is true because for any (y, d, x, z) ∈ SYDXZ, we have

PS(Y ≤ y; D = d|X = x, Z = z) = PS(ε ≤ h−1(d, x, y); D = d|X = x, Z = z)

= P(Y ≤ y; D = d|X = x, Z = z).

The last step comes from the construction of FεD|XZ.

A.7. Proof of Theorem 4.
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Proof. By Section 4, the only if part is trivial.

For the if part, suppose condition (i) and (ii) hold for a structure S0 = [h, FηD|XZ] satisfying

assumption A. It suffices to construct an observational equivalent structural S1 ∈ M1. Fix

an arbitrary x ∈ SX. By assumption A, ε ∼ U[0, 1]. By Theorem 2 the structural function

h(d, x, ·), is identified for d = 0, 1. Hence, it suffices to construct m and Fεη . Let η ∼ U[0, 1] and

m(x, z) = p(x, z). Lastly, let C be the copula of the joint distribution Fεη . Now it suffices to show

observational equivalence of the constructed structure S1 = [h, m, Fεη ].

Fix (x, z) ∈ SXZ. We first look at the case where 0 < p(x, z) < 1. Given the identification of

φx(·) by condition (i), we have τx(y) = h−1(1, x, y) in the condition (ii), which further implies

that for any τ ∈ (0, 1),

P(Y ≤ h(1, x, τ); D = 1|X = x, Z = z) = C(τ, p(x, z)).

Because C is a copula function with non degenerate support [0, 1]2, then SY|D=1,X=x,Z=z =

Sh(1,x,ε). By assumption A, we have

P(Y ≤ h(0, x, τ); D = 0|X = x, Z = z) + P(Y ≤ h(1, x, τ); D = 1|X = x, Z = z) = τ.

Therefore,

P(Y ≤ h(0, x, τ); D = 0|X = x, Z = z)

= τ −P(Y ≤ h(1, x, τ); D = 1|X = x, Z = z) = τ − C(τ, p(x, z)), (11)

which implies SY|D=0,X=x,Z=z = Sh(0,x,ε) by a similar argument as above.

We now show observational equivalence, i.e., for d = 0, 1, any z ∈ SZ|X=x and y ∈ R,

PS1(Y ≤ y; D = d|X = x, Z = z) = P(Y ≤ y; D = d|X = x, Z = z).

This is true because for any y ∈ Sh(1,x,ε),

PS1(Y ≤ y; D = 1|X = x, Z = z) = C(h−1(1, x, y), p(x, z)) = P(Y ≤ y; D = 1|X = x, Z = z).
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Moreover, or any y ∈ Sh(0,x,ε),

PS1(Y ≤ y; D = 0|X = x, Z = z) = PS1(ε ≤ h−1(0, x, y); η > p(x, z))

= h−1(0, x, y)− C(h−1(0, x, y), p(x, z)) = P(Y ≤ y; D = 0|X = x, Z = z)

where the last step comes from (11).

When p(x, z) = 1, m(x, z) = p(x, z) = 1. Note that PS1(Y ≤ y; D = 0|X = x, Z = z) =

P(Y ≤ y; D = 0|X = x, Z = z) = 0 for all y. Moreover, we have Sh(1,x,ε) = SY|D=1,X=x,Z=z.

Then, it suffices to show PS1(Y ≤ y; D = 1|X = x, Z = z) = P(Y ≤ y; D = 1|X = x, Z = z) for

all y ∈ Sh(1,x,ε). This is true because

PS1(Y ≤ h(1, x, τ); D = 1|X = x, Z = z) = PS1(ε ≤ τ; η ≤ 1) = τ.

Moreover, P
[
Y ≤ h(1, x, τ); D = 1|X = x, Z = z

]
= C(τ, 1) = τ. A similar argument holds for

the case with p(x, z) = 0.

A.8. Proof of Theorem 5.

Proof. Our proofs take two steps: First, we will show that the constructed mapping defined by

(10) satisfies

h(1, x, τ) = φx,x̃
(
h(0, x̃, τ)

)
, ∀τ ∈ [0, 1];

Second, we will show that the distribution of h(d, x, ε) can be identified, from which we identify

function h(d, x, ·).

Fix x ∈ SX and x̃ ∈ SX satisfying assumption F. Let further z1, z2 ∈ SZ|X=x and z̃1, z̃2 ∈

SZ|X=x̃ such that p(x, z1) = p(x̃, z̃1) < p(x, z2) = p(x̃, z̃2). By definition φx,x̃ is well defined,

weakly increasing and left–continuous.

We now show that h(1, x, ·) = φx,x̃(h(0, x̃, ·)). For any τ ∈ [0, 1], ψ(0, x̃, τ) = sup{e :

h(0, x̃, e) = h(0, x̃, τ)}. By assumption E, we have

Fh(0,x̃,ε)|m(x̃,z̃1)<η≤m(x̃,z̃2)(h(0, x̃, τ)) = Fε|m(x̃,z̃1)<η≤m(x̃,z̃2)(ψ(0, x̃, τ)).
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Therefore,

φx,x̃
(
h(0, x̃, τ)

)
= Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)

(
Fε|m(x̃,z̃1)<η≤m(x̃,z̃2)(ψ(0, x̃, τ))

)
= Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)

(
Fε|m(x,z1)<η≤m(x,z2)(ψ(0, x̃, τ))

)
.

The last step comes from the fact that m(x, zj) = m(x̃, z̃j) for j = 1, 2. Note that

P
[
h(1, x, ε) ≤ h(1, x, ψ(0, x̃, τ))

∣∣m(x, z1) < η ≤ m(x, z2)
]

≥ P
[
ε ≤ ψ(0, x̃, τ)

∣∣m(x, z1) < η ≤ m(x, z2)
]
= Fε|m(x,z1)<η≤m(x,z2)(ψ(0, x̃, τ)),

which implies

Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)

(
Fε|m(x,z1)<η≤m(x,z2)(ψ(0, x̃, τ))

)
≤ h(1, x, ψ(0, x̃, τ)).

Moreover, for any y < h(1, x, ψ(0, x̃, τ)),

P
[
h(1, x, ε) ≤ y

∣∣m(x, z1) < η ≤ m(x, z2)
]

= P
[
h(1, x, ε) ≤ h

(
1, x, ψ(0, x̃, τ)

)∣∣m(x, z1) < η ≤ m(x, z2)
]

− P
[
y < h(1, x, ε) ≤ h(1, x, ψ(0, x̃, τ))

∣∣m(x, z1) < η ≤ m(x, z2)
]

< Fε|m(x,z1)<η≤m(x,z2)(ψ(0, x̃, τ)),

where the last inequality comes from the fact that by assumption E, for any y < h(1, x, ψ(0, x̃, τ),

P
[
y < h(1, x, ε) ≤ h(1, x, ψ(0, x̃, τ))

∣∣m(x, z1) < η ≤ m(x, z2)
]
> 0.

Thus, we have that

Qh(1,x,ε)|m(x,z1)<η≤m(x,z2)

(
Fε|m(x,z1)<η≤m(x,z2)(ψ(0, x̃, τ))

)
= h (1, x, ψ(0, x̃, τ)) ,

which gives us that φx,x̃(h(0, x̃, τ)) = h (1, x, ψ(0, x̃, τ)). By the definition of ψ(0, x̃, τ) and

condition (ii), there is h (1, x, ψ(0, x̃, τ)) = h (1, x, τ). Because τ is arbitrary in (0, 1], then

h (1, x, ·) = φx,x̃
(
h(0, x̃, ·)

)
on (0, 1].
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For the second step, it is straightforward that the distribution of h(1, x, ε) is identified as

Fh(1,x,ε)(y) = P(Y ≤ y; D = 1|X = x) + P
[
φx,x̃(Y) ≤ y; D = 0|X = x̃

]
, ∀y ∈ R.

Now we show the identification of h(1, x, ·) from Fh(1,x,ε).

By definition, Qh(1,x,ε)(τ) = inf {y ∈ R : P [h(1, x, ε) ≤ y] ≥ τ}. Because of the weakly mono-

tonicity of h in ε, we have h(1, x, u) ≤ h (1, x, τ) for all u ≤ τ. Therefore, we have that

P [h(1, x, ε) ≤ h (1, x, τ)] ≥ τ.

It follows that Qh(1,x,ε)(τ) ≤ h (1, x, τ).

Moreover, fix arbitrary y < h (1, x, τ). Then

P [h(1, x, ε) ≤ y] = P [h(1, x, ε) ≤ y; ε ≤ τ] = P [ε ≤ τ]−P [ε ≤ τ; h(1, x, ε) > y] < τ.

where the first equality is because h(1, x, ε) ≤ y implies ε ≤ τ, and the inequality comes from

the fact that P [ε ≤ τ; h(1, x, ε) > y] > 0 under assumption E. Thus, Qh(1,x,ε)(τ) > y for all

y < h(1, x, τ). Hence, Qh(1,x,ε)(τ) = h (1, x, τ). �
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